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ABSTRACT

Advantages of using visual programming to create, modify, test and display a telemetry
stream are presented. Commercial visual programming software is being used to test
new algorithms as part of the ground support for the Galileo spacecraft Test Bed. It is
very important that any new software algorithms be thoroughly tested on the ground
before any modifications are made to the spacecraft.

Visual programming provides easy visibility into the decommutation process, including
real-time data display and error detection. A data acquisition board is used to clock in
the actual synchronous telemetry signal from the Test Bed at rates below 10 k? Iz. Time
to write and modify code using visual programming is significantly less, by a factor of 4
to 10, than using text-based code. The gains in productivity are attributed to the
communication among the customer, developer, and computer that are facilitated by
the visual syntax of the language.

INTRODUCTION

The Measurement Technology Center (MT(’) evaluates commercial data acquisition,
analysis, display and control hardware and software products that are then made
available to experimenters at the Jet Propulsion 1.aboratory.ir-addition, the MTC acts as
a systems integrator to deliver turn-key measurement systems that include software,
user interface, sensors (e. g., thermocouples, pressure transducers) and signal
conditioning, plus data acquisition, analysis, display, simulation and control
capabilities.)?

Visual programming tools are frequent] y used to simplify development (compared to
text-based programming) of such systems. }imp] oymentof visual programming tools
that control off-the-shelf interface cards has been the most important factor in reducing
time and cost of configuring these systems. The MTC consistent] y achieves a reduction
in software/systen~ development time by at least a factor of four, and up to an order of
magnitude, compared to text-based software tools.?45¢ Others in industry are reporting
similar increases in productivity and reduction in software /system development time
and cost.”89




BACKGROUND

The Galileo spacecraft will arrive at Jupiter in December of 1995. It willbe put into a
highly elliptical orbit with a period of about three months. Each orbit will be modified
slightly to allow the spacecraft to encounter a different moon or feature of Jupiter. For a
few days during these close encounters, intense data acquisition will be performed with
the data logged to the on-board tape recorder. |)uringthe remainder of each three-
month orbit while the spacecraft is relatively far from Jupiter, the computer subsystems
willbe involved in compressing and compacting the tape data and downloading it to
earth at a very low bit-rate (due to the high-rate dish antenna’s failure to fully open).

Currently, the MTC is supporting a software redesign of the computer system aboard
the Galileo spacecraft. This paper documents the programming effort to verify the
correct re-programming of the Galileo computer subsystems by monitoring the
telemetry of the ground Test Bed setup of the computer subsystems and the emulation
hardware for the instruments to assure that every bytc is correctly downloaded. The
support is for the process, not the data itself. The MTC is using 1.abVIEW software
among other tools to help test the flight software redesign. For details on the 1.abVIEW
programming environment, other sources exist.011.12
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Figure 1. Ground Support Sequence

Figure 1 shows the Ground Support Seauence. The point of this effort is to test the
compression algorithms plus the commutation of the data into packets. Using visual
programming, software was developed to perform the various compression algorithms
tobe used on the different science instruments. Each instrument has multiple modes of
compression to take into account the relative value of the data at differing times in the
mission. ‘1 ‘he compressed data for each of these modes for each instrument are stored in
files called the Predict Tables. A necessary additional component was a Test Bed
simulator so all of the other programs could be developed and debugged before
connection to the Test Bed.




During a test, the Test Bed reads the raw instrument data, performs the compression
and commutation algorithms to be verified and outputs a telemetry stream. An analyzer
was developed to monitor the telemetry from the TestBed, decommutate the data,
compare it to data in the Predict Tables and display the progress of the test.

LabVI1EW running on a Macintosh Quadra was used as the programming environment
for this task because it had proved to be superior in similar tasks.’* The advantages
I.abVIEW provides include the ease with which the customer can communicate
requirements to the programmers and understand the operation of the program so that
changes can be suggested, The gains in productivity are attributed tothe
communication among the customer, developer, and computer that are facilitated by
the visual syntax of the language. 1.abVIEW proved exceptionally capable in providing
an integrated environment to manage all aspects of the telemetry test, from pre-test data
set-up to post-test discrepancy resolution, as well as running the test in several
simulator modes or with the Galileo hardware.

HIC Heavy lon Counter Subsystem

EPD) Energet ic Part icles 1 Deteclor Subsystem

PWI, Plasma Wave Subsystem (1 .ow Rate)

PWH] Plasma Wave Subsystem (1 ligh Rate)

PL.S Plasma Subsystem

DS ust Detector Subsystem

MAG Magnetometer Subsystem

LIVS Ultraviolet Spectrometer Subsystem

EUV Extreme Ultraviolet Subsystem

INNIS Photopolarimeter Radiometer Subsystem
NIMS Near Infrared Mapping Spectrometer Subsystem
SSl Solid State imaging Subsystem

OPN Optical Navigation

AACS Attitude and Articulation Control Subsystem
ENG Engincering (housekeeping)

~'able 1. Galileo Instrument Subsystems
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Figure 2. Packet structure




ANALYZER

The telemetry from the I.ow-Gain Antenna Mission of the Galileo spacecraft contains
data from the fifteen instrument sources. ‘1 ‘hey are assigned mnemonics as listed in
I’able 1. Each of these instruments has from two to seven types of data or modes of
operation which extend the mnemonic names with a single digit, There are a total of
fifty-six of these instrument types and each is assigned an application identification
(App ID) code. The data from these App 11)’s is independently collected into packets of
up to 511bytes and appended to a header of from three. to eight bytes (Figure 2). The
packets are then assembled into VCIDU’s (Virtual Channel Data Units) which always
contain four bytes of header and 442 bytes of packets with provisions for allowing
packets to roll over from one VCDU to a later one (Figure 3). Four VCDU’s (a total of
1784 bytes) arc then assembled into a frame with a two-byte frame number, an cight-
byte PN (pseudo-noise) sync word, and 254 bytes of Reed-%lomon error-correction
codes applied in eight unequal-size groups. This 2048-byte frame is then run through
convolutional encoding which doubles the number of bytes producing 32768 bits of
telemetry. Figure 4 is a schematic of the frame structure.

VCDU | Sequence First Remnant First Full Partial
1 number packet of prior full packet(s) packet
pointer packet packet
from
instrument
Bits: 3 20 9
VCDU header (4 Bytes) VCDU contents (442. Bytes)

Figure 3. VCDU Structure

The testing of this telemetry stream involves a reverse process so that the data from the
individual packets assigned to each of the App 1 1)’s can be recovered and compared to
its predicted value. The first step is to capturc the telemetry in real time. The telemetry
stream from the Computer 1 >ata Subsystem consists of a clock line and a data line, both
swinging between zero and five volts. The clock line is connected directly to the sample
input on a data acquisition board. On each low-going transition of this clock line, the
voltage on the data line is measured and stored in memory using the double-buffered
data acquisition mode of LabVIEW which provides for continuous sampling of an input
voltage. The sampled voltages are compared to a threshold (set at 2.5 volts) producing a
single data bit for each clock.

The second step is to run these bits through a de-convolutional process which

purposely does not correct for errors but produces two bit streams. The eight-byte PN
sync word is searched for in both of these streams until it is found in one of them, at

which point the other one is ignored. The next 2040 bytes are then assembled into a two-




byte frame sequence number, 254 bytes of Reed-Solomon error-correction codes, and
four VCIJU’s o-f 446 bytes cach.’

Sync| & .
o vChu 1 vChu 2 vCchu 3 VCIYU 4
Word &
Bytes: 8 | 2 446 446 454 692

Encoded region (2048 Bytes, 16384 bits)

I l Data - Recd-Solomon Error Correction

Figure 4. Telemetry Frame Structure

T ‘he full screen (21 inch monitor) user interface (1 .abVIEW Yront Panel) is shown as
Figure 5. It gives an idea of the complexity of the user interface required to display the
analysis. It has been given boxes and” numbers to help explain in detail.

Figure .5 (part 1) displays the number of bits occurring before the sync word was found,
the frame number and whether it is outof sequence, and whether the eight groups of
Reed-Solomon codes arc incorrect (no corrections are applied). These (RS) errors are
displayed in red in the frame in which they occur and change to yellow on subsequent
frames. The operator can click onthese latching error indicators, changing them to
green. The buffer indicator displays the status of the real-time buffer. The l.og TI.M
switch allows the operator to save the raw telemetry stream to a disk file for later
analysis.

The third step is to check the headers of the four VCIU’s (Yigure 3). These headers
contain three bits defining a VCU I type numbered zero through seven, twenty bits
defining a sequence number, and nine bits usedto handle the roll-overof packets
between VCIDU’s, Each of the eight VCDU 1 1)’s keeps track of its own sequence number
and can contain packets only from certain App 11 )’s.krrors are again displayed in
latching red, yellow, green indicators.

The fourth step (Figure .5, part 2) is to partition each VCDU into packets, temporarily
storing any partial packet at the end and recombining any remnant packet at the
beginning with its previously stored partial. Theanalyzer displays the sequence of
packets within the four VCIOU’s contained in each frame in two different ways. First, a
series of vertical text windows identifies information on each packet with three red-
green error indicators below them. The top line of the text window displays the VCIU
11D number followed by a letter signifying the position of the VCIDU within the frame.
l.ower-case letters (a, b, ¢, & d) are used for partial packets at the end of the VCDU'’s
and upper-case letters (A, B, C., & D)) are used for complete packets and for remnant
packets at the beginningof the VCIDU’s which have been combined with their




previously stored partials. T°he three error indicators below each packet text window are
“turned off” (shown in gray) for the partial packets at the end of each VCIU because
errors arc not processed until the partial is combined with its remnant. The second line
of the text window displays the App 1 I mnemonic and number. Further clown the text
window is the packet size which includes onl y those bytes within the current VCIDU.
The sum of the packet sizes for all the packets (including remnants and partials) within
each VCDU will equal 442.

The second way that the packets within the four VCDU'’s in each frame arc displayed is
in a scrollable strip-chart (part 3). The frames are delineated with marks at the top and
bottom of the strip-chart, ‘I’he VCI)U’s are delineated with vertical gridlines, separating
the frame into four parts. The first one (on the left) corresponds to the VCIJU with the
letter “A,” the next one “B,” then “C,” and finally “1>” on the right. The VCIDU numbers
arc indicated by the colors of the stripes labeled “VCI>U 1 1Y’ on the strip-chart. White,
for example, corresponds to VC1)UII) (J. The positions of the striped segments making
up the lower two-thirds of the strip-chart indicate the App 11) mnemonics within each
VCDU. Their colors indicate the App 1 | ) numbers and their lengths indicate their sizes.
The errors are indicated by red stripes at the top of the strip-chart.

The fifth step is to display the packet header information in the text window (part 2).
The current and previous sequence numbers are, displayed and the corresponding error
indicator below the text window is turned red. Some App 11) types allow for a format
11 of four or eight bits which is used to interpret the data (Figure 2). These bits are
displayed onthe FMT ID line as one or two hex nybbles. The time of the packet (in
spacecraft clock units) can be optionally included in the header. A “Time Included” bit
in the header signifies whenever this happens. The actual number of bits of time varies
depending on the App 1D and is between 20 and 32 bits and is displayed as five to eight
hex nybbles if present. When less than 32 bits, the more significant bits are discarded.

‘1 'he sixth step is to analyze the packet data. The size is displayed on the | Jata Size line in
the text window. Each App 11D has associated with it a file containing the predicted
telemetry bytes called the predict table. When each packet is received (including a
remnant attached to a partial) it is searched for in its predict table. If it is found, its
location is indicated in the text window at Prdt TblPointer and the next expected
location is saved in memory. The next time the same App 11) occurs, if the data in the
packet is not found at the expected location, the Table Seq Error indicator will show red.
If the data cannot be found in its predict table, the Not-In-Table Error indicator shows
red. The three crror indicators below each packet text window are not latched,; i.e., they
always show status for the current frame.

The seventh step is to update the small latched error indicators in the Packet rror
Status Panel (part 4). EKach App 11 has a set of three indicators corresponding to the
three indicators below the packet text windows, The onc on the left is the Seq irror, the
center one is the ‘I’able Seq Error, the right-hand one is the Not-1n-Table Error. Any new
errors during the current frame will appear as red and change to yellow on subsequent



frames. The operator can clear any of these indicators by clicking on them individually
or all of them at once by hitting the Reset Errors button,

The cighth step is to update the large text window (part 5) which provides details on the
errors. in addition to the information included in other places on the panel, offending
packets are dumped so that post analysis can be performed. This text window can also
be written to a file by turning on thel.og Status switch.

The last step involves controlling other diagnostic windows under control of the

operator, including packet windows which display all the data for a particular App 1D,
VCDU windows which display all the data for a particular VCDU type, a frame
window which displays the entire unprocessed frame, and a statistics window which
displays the current sequence number, the current format 1 1), and the latest included
time for each App 1D.

CONCLUSIONS

A visual programming language was able to create, modify, test and display a telemetry
stream. It provided easy visibility into the decommutation process modified by the
Galileo programming support team. The time to write and modify the code using visual
programming was significantly less (by a factor of 4 to 10) than using text-based code.
This task showed that it is possible to use visual programming for realistic
programming applications. It also confirmed that visual programming can significantly
reduce software development time compared to text-based programming.

Other advantages demonstrated were in the areas of prototyping and verification.
Different approaches can be demonstrated and evaluated quickly using a visual
programming language. Verification can be demonstrated using the graphical user
interface features available in a visual programming language casier than using
conventional text-based code.

As stated, the gains in productivity are attributed to the communication among the
customer, developer, and computer that arc facilitated by the visual syntax of the
language. The advantages 1.abVIEW provides include the ease with which the customer
can communicate requirements to the programmers and understand the operation of
the program so that changes can be suggested. With this communication, the
boundaries between requirements, design, development, and test appear to collapse.
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